TECHNICAL SESSION 2: WATER TREATMENT

5th Virtual Network Meeting of the Utility Platform, Tuesday November 29th, 2022

RASARA

HAMBURG

AGENDA

1. Welcome and introduction

- 2. Statements of WOP partners
- 3. Water treatment issues (proposal):
 - Process optimization
 - Chemical use
 - > Water quality
 - Performance indicators
 - > Trainings
 - Exchange of experience
- 4. Conclusions / Summary

PROCESS OPTIMIZATION

Example: Filtration process

- Filter material
- Filtration efficiency: runtime and filtrate quality

...

• Filter backwash

Filter sand samples from different top layer areas after first filter backwash after filter refilling: left – filter sand, right – smaller undergrain

Removing undergain manually

- Selection and application of chemicals
- Focus:
 - Flocculation
 - Disinfection

WATER QUALITY

Water quality aspects

- Problems and challenges regarding water quality?
- Possibilities for treatment process adaptation / optimization?

- Are PI used in your utility?
- Sets of PI? KPI/PPI?
- Application in short, mid term and long term planning?

	PI	unit
1	Operation - Production	
	BASIC PI	
1.1	raw water extraction	[m3]
1.2	amount of treated water	[m3]
1.3	amount of water supply	[m3]
1.4	amount of water used	[m3]
1.5	amount of backwashing water	[m3]
1.6	consumption of polymer cationic	[kg]
	consumption of sodium chlorite (liq)	[kg]
1.7	1.8 consumtion of chlorine	
1.8		
1.9		
1.10	filter run time	[h]
1.11	height sand layer	[m]
1.12	height anthracite layer	[m]
1.13		
	SPECIFIC PI	
1.30	plant availability	[%]
1.31	spezific internal water consumption	[%]
1.32	specific consumption of backwash water	[%]
1.33	specific consumption of chlorine	[g/m3]
1.34	specific consumption of chlorine dioxide	[g/m3]
1.35	specific consumption of coagulant	[g/m3]
1.36	specific consumption of coagulant incl. turbidity	
1.37	spec. chemical consumption of polymer	[g/m3]
1.38	spec. chemical consumption of polymer incl. Turbidity	[g/(m3*NTU)

TRAININGS

- Training situation in the utility?
- Training for WTP staff?
- Development of water treatment trainings for the Utility Platform?

EXCHANGE OF EXPERIENCE

- Exchange of experience in water treatment on the Utility Platform?
- Regular online meetings of treatment experts?
- On-the-job training

AGENDA

1. Welcome and introduction

2. Statements of WOP partners

- 3. Water treatment issues (proposal):
 - Process optimization
 - Chemical use
 - > Water quality
 - Performance indicators
 - > Trainings
 - Exchange of experience
- 4. Conclusions / Summary

AGENDA

- 1. Welcome and introduction
- 2. Statements of WOP partners

3. Water treatment issues (proposal):

- Process optimization
- Chemical use
- > Water quality
- Performance indicators
- > Trainings
- Exchange of experience
- 4. Conclusions / Summary

PROCESS OPTIMIZATION

Example: Filtration process

- Filter material
- Filtration efficiency: runtime and filtrate quality

...

• Filter backwash

Filter sand samples from different top layer areas after first filter backwash after filter refilling: left – filter sand, right – smaller undergrain

Removing undergain manually

PROCESS OPTIMIZATION

Example: Filtration process

Filter Material

- Check filter material installed and filter backwash
- Undergrain layer on top of sand must be removed manually, final backwash
- Production start
- Result: higher flow rate of water and very good filtrate quality, longer filter run time

Filter Backwash

- Short backwash with air
- Backwash with air and water or water alone with filter bed expansion
- Result: saving of backwash water, higher production

Filter sand samples from different top layer areas after first filter backwash after filter refilling: left – filter sand, right – smaller undergrain

Removing undergain manually

- Selection and application of chemicals
- Focus:
 - Flocculation
 - Disinfection

Chemicals in Surface Water Treatment:

Flocculation Chemicals

- Coagulants (aluminium or iron compounds)
- Flocculants (= flocculation aids; organic polymers)

Disinfection Chemicals

- Chlorine for prechlorination (chlorination of rawwater)
- Chlorine for postchlorination (final disinfection)
- Chlorine dioxide

Flocculation chemicals

Group	Chemicals	Function
coagulant	aluminium salts iron (III)-salts	destabilisation, aggregation and precipitation, co-precipitation in metal hydroxides
flocculation aid (flocculant)	synthetic high-molecular polymers, polyelectrolytes	aggregation of small flocs to bigger agglomerates, stabilisation of flocs
other chemicals, if needed	milk of lime, lime water, caustic soda, acid	pH-adjustment

Function of coagulant and anionic polymer (flocculation aid)

Jar Test

- Laboratory tests are generally recommended to compare and select flocculation chemicals.
- Application of potable water grade (PWG) chemicals must be ensured!

Flocculation aid: dosing station

- > Anionic polyacrylamide product in dry form
- Dissolving of polymer is slow (1 h)
- > Dosing solution must be prepared on site
- Automomatic dosing and preparation stations widely used
- 2 or 3 chamber stations allow production of dosing solution to demand
- > Normal dose: 0.1 -0.4 ppm

Recommendations for flocculation chemicals

- Avoid dosing of unnecessary chemicals.
- Compare and test flocculation products in laboratory and in full scale to achieve a technologically and economically efficient process.
- Ensure products applied have a proven PWG certificate (impurities may present health risks)

Ideas and recommendations for chlorination

- Avoid unnecessary dosing of chlorine.
- If prechlorination is applied investigate the need.
 Prechlorination may be useful in case of
 - high fecal contamination of the rawwater,
 - high numbers of algae in the rawwater,
 - need to reduce color.
- Dose chlorine according to demand to ensure safe drinking water quality. Overdosing increases costs and causes higher formation of unwanted disinfection byproducts.
- Idea: Produce chlorination solution from table salt by electrolysis

AMBURG

WATER QUALITY

Water quality aspects

- Problems and challenges regarding water quality?
- Possibilities for treatment process adaptation / optimization?

- Are PI used in your utility?
- Sets of PI? KPI/PPI?
- Application in short, mid term and long term planning?

	PI	unit		
1	Operation - Production			
	BASIC PI			
1.1	raw water extraction	[m3]		
1.2	amount of treated water	[m3]		
1.3	amount of water supply	[m3]		
1.4	amount of water used	[m3]		
1.5	amount of backwashing water	[m3]		
1.6	consumption of polymer cationic	[kg]		
	consumption of sodium chlorite (liq)	[kg]		
1.7	consumption of coagulant	[kg]		
1.8	consumtion of chlorine	[kg]		
1.9	consumption of chlorine dioxide	[kg]		
1.10	filter run time	[h]		
1.11	height sand layer	[m]		
1.12	height anthracite layer	[m]		
1.13				
	SPECIFIC PI			
1.30	plant availability	[%]		
1.31	spezific internal water consumption	[%]		
1.32	specific consumption of backwash water	[%]		
1.33	specific consumption of chlorine	[g/m3]		
1.34	specific consumption of chlorine dioxide	[g/m3]		
1.35	specific consumption of coagulant	[g/m3]		
1.36	specific consumption of coagulant incl. turbidity [g			
1.37	spec. chemical consumption of polymer	[g/m3]		
1.38	spec. chemical consumption of polymer incl. Turbidity	[g/(m3*NTU)		

Operation - Production

BA	ASIC PI				
1.1	raw water extraction	[m ³]			
1.2	amount of treated water	[m ³]			
1.3	amount of water supply	[m ³]			
1.4	amount of water used	[m ³]			
1.5	amount of backwashing water	[m ³]			
1.6	consumption of polymer cationic	[kg]			
	consumption of sodium chlorite (liq)	[kg]			
1.7	consumption of coagulant	[kg]			
1.8	consumtion of chlorine				
1.9	consumption of chlorine dioxide				
1.10	filter run time	[h]			
1.11	height sand layer	[m]			
1.12	height anthracite layer	SPE	CIFIC PI		
		1.30		plant availability	
		1.31		spezific internal water consumption	
		1.32		specific consumption of backwash water	
		1.33		specific consumption of chlorine	
		1.34		specific consumption of chlorine dioxide	
		1.35		specific consumption of coagulant	
		1.36		specific consumption of coagulant incl. turbidity	[9
		1.37		spec. chemical consumption of polymer	
		1.38		spec. chemical consumption of polymer incl. Turbidity	[9

Operation - Quality

BASIC PI		
2.1	turbidity raw water	[NTU]
2.2	turbidity treated water	[NTU]
2.3	colour	
2.4	formation of disinfection by-products	
2.5	number of nematodes in raw water	[-]
2.6	number of nematodes in treated water	[-]
2.7	redox potential (Eh)	

Groundwater Use

	BASIC PI	
3.1	groundwater abstraction	[m ³]
3.2	abstraction rate	[m ³ /h]
3.3	well availability	[%]

Energy

BASIC PI				
4.1	.1 total power consumption			
4.2	power consumption raw water extraction	[kWh]		
4.3	power consumption water treatment	[kWh]		
4.4				
	SPECIFIC PI			
4.5	spec. power consumption raw water abstraction	[kWh/m ³]		
4.6	spec. power consumption water treatment	[kWh/m ³]		
4.7		* *		

Finance

	BASIC PI	
5.1	total costs	[JD.]
5.2	investments	[JD.]
5.3	maintenance	[JD.]
5.4	costs for polymer	[JD.]
5.5	costs for energy	[JD.]
5.6		
	SPECIFIC PI	
5.7	specific operating costs supplied water	[JD./m ³]
5.8	spec. maintenace expenditure	[JD./m ³]
5.9	portion energy expenditure	[%]
5.10	spec. energy expenditure	[JD./m ³]
5.11		

Human Resources

BASIC PI	
6.1 Number of trained employees	[•]
6.2 Improved occuptation in health	[-]

AGENDA

- 1. Welcome and introduction
- 2. Statements of WOP partners
- 3. Water treatment issues (proposal):
 - Process optimization
 - Chemical use
 - > Water quality
 - Performance indicators
 - > Trainings
 - Exchange of experience

4. Conclusions / Summary

THANK YOU FOR YOUR PARTICIPATION

DEVELOPMENT OF CHEMICAL USE IN FLOCCULATION

20+ years ago:

- aluminium sulfate (+ lime für stabilization of pH)
- disadvantages: high chemical demand
 - AS highly acidic (pH correction)
 - dry products, dosing solutions prepared at WTP

Intermediate development:

- AS replaced by polyaluminiumchloride (PAC)
- advantages: liquid product, ready to dose, no pH correction
- introduction of flocculation aid (organic polymers, dosed after coagulant)

Recent development:

- liquid blend products of PAC and cationic polymer (one product dosed)

11

CHEMICAL DEMAND FOR DIFFERENT CHEMICALS (TYPICAL DOSE FROM PERSONAL EXPERIENCE)

Rawwater: (mid) turbidity 400 NTU

Chemical (combination)	Dose	Observation
PAC	60 ppm	Flocs not very stable, many small
PAC + anionic polymer		Big, dense flocs, well sedimenting
PAC	40 ppm	
Anionic polymer	0.2 ppm	
PAC + cationic polymer		Flocs dense and stable, often smaller than with anionic polymer
PAC	40 ppm	
Cationic polymer	1- 2 ppm	
Blend		Flocs better than PAC alone, not strong
PAC	40 ppm	
Cationic polymer	40 ppm	